Echtzeit-Sturzflutvorhersage mit neuronalen Netzen auf Grundlage hydrodynamischer Berechnungen AVO

Arne Reinecke¹, Insa Neuweiler¹, Bettina Huth², Thomas Brendt², Andreas Hänsler³, Andreas Steinbrich³, Hannes Leistert³

Motivation

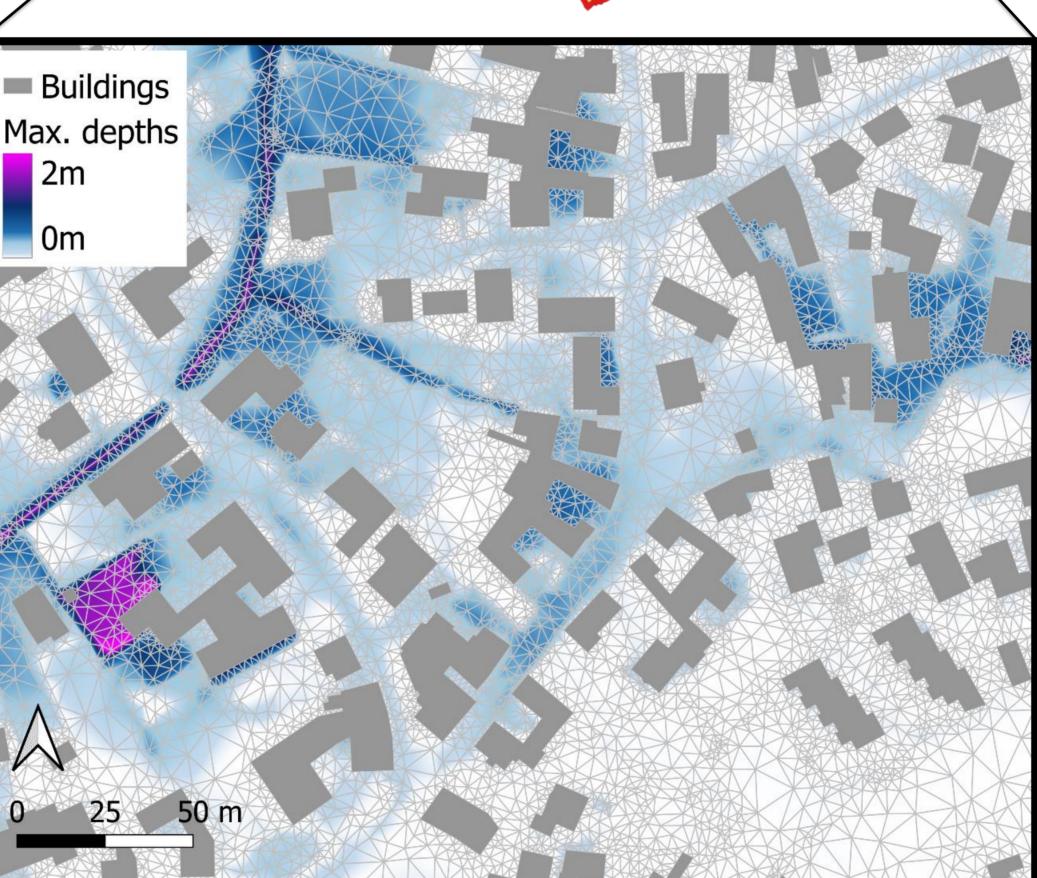
- > Bislang keine Echtzeit-Warnung vor Sturzfluten infolge Starkregen aufgrund fehlender Überflutungsinformationen
- > Infolge vieler Unsicherheiten hat Starkregen eine geringe Vorhersagefrist von einigen Minuten bis wenigen Stunden
- Überflutungsberechnungen mit physikalisch Modellen dauern für ein urbanes Gebiet etwa 2-8 Stunden
- > Um die Bevölkerung bedarfsgerecht zu warnen, werden hochauflösende, schnelle Ersatzmodelle benötigt

Forschungsziel

Entwicklung eines Sturzflut-Vorhersagemodells...

- > durch das Training von neuronalen Netzen mit Daten (z.B. Wassertiefen) aus hydrodynamischen Modellen
- > unter der Betrachtung von räumlich und zeitlich verteiltem Niederschlag und Vorfeuchtebedingungen
- > um Unsicherheiten in der Echtzeit-Überflutungsvorhersage abbilden zu können.

[3]

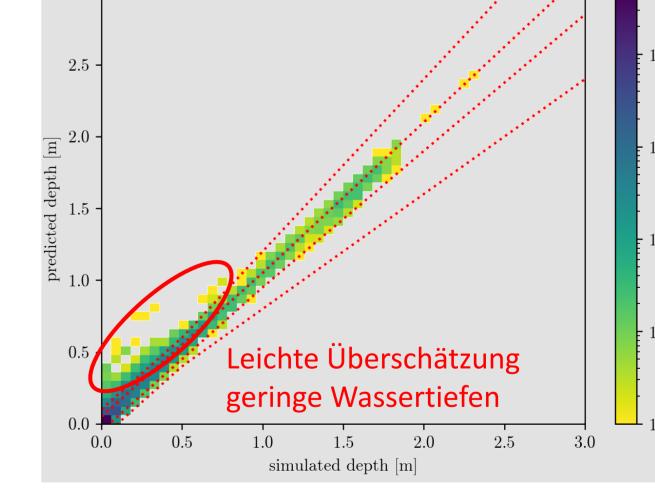

I) Aufbau Überflutungsdatenbank

a. Auswahl von Niederschlagsereignissen mit unterschiedlicher Dauer und Extremität

FLIWAS- Status	Regen bis mäßiger Starkregen	Starkregen			intensiver Starkregen		außergewöhnlicher Starkregen					
SRI [-]	1	2	3	4	5	6	7	8	9	10	11	12
Dauerstufe [min]	Niederschlagshöhe h _N [mm]											
5	7	10	11	14	15	16	19	22 - 26	26 - 29	30 - 41	41 - 52	> 52
10	11	14	17	20	21	23	26	31 - 36	36 - 41	41 - 57	57 - 72	> 72
15	14	18	21	26	27	30	34	40 - 47	47 - 54	54 - 74	74 - 94	> 94
30	18	24	29	37	39	44	52	62 - 72	73 - 82	83 - 113	114 - 145	> 145
45	21	27	33	42	44	50	59	71 - 82	82 - 93	94 - 129	129 - 165	> 165
60	22	29	36	45	47	53	62	74 - 85	86 - 98	98 - 135	135 - 172	> 172
90	24	32	38	47	49	55	63	75 - 87	88 - 100	100 - 138	138 - 176	> 176
120	25	34	40	50	52	58	66	79 - 92	92 - 105	106 - 145	145 - 185	> 185
180	28	36	43	52	54	59	67	80 - 93	93 - 106	107 - 146	147 - 187	> 187
240	30	38	45	54	56	61	68	82 - 95	96 - 109	110 - 150	151 - 192	> 192
300	31	39	45	54	56	62	69	83 - 96	97 - 110	111 - 152	152 - 194	> 194
360	32	40	46	55	57	62	70	84 - 97	98 - 111	112 - 153	154 - 196	> 196
Alle Werte gerundet; Version 1.5 - Dez 202:												

- b. Berechnung Oberflächenabflusskennwerte (OAK) für alle Niederschlagsereignisse mit hydrologischem Modell "RoGeR_Dyn" [1]
- Hydrodynamische Berechnung der Wassertiefen und Fließgeschwindigkeiten (HydroAS, Finite-Volumen-Methode [2])
- d. Aufteilung der > 500 Ereignisse in Trainings-, Validierungs- und Test-Daten

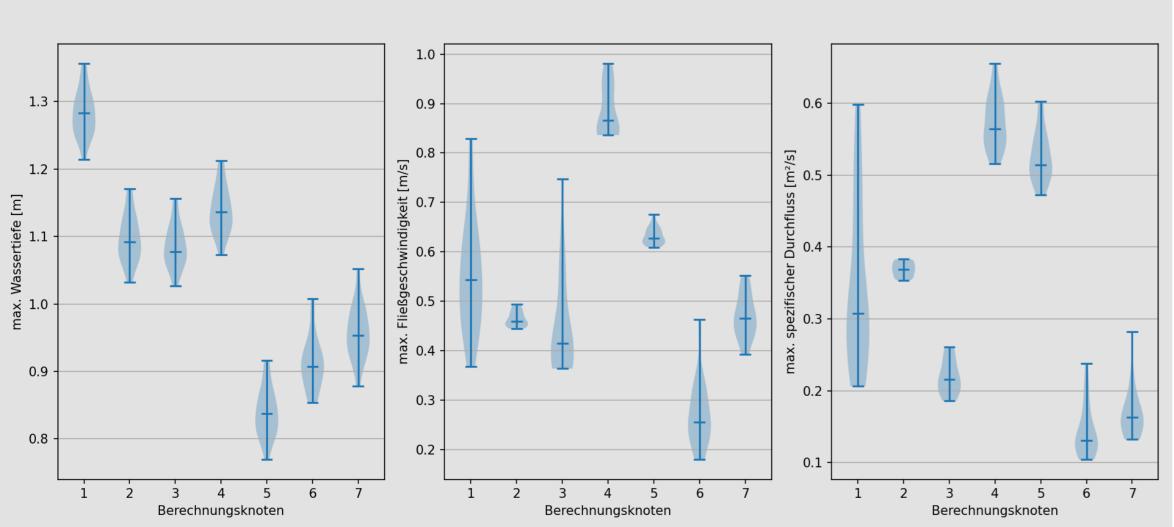
Buildings Catchment Flood forecast area --- Water Network Elevation 500m 150m 1.000 m Buildings



Live-OAK (mit RoGeR, aus Radar-Vorhersage) Vorhersage von ... max. Wassertiefe max. Fließgeschwindigkeit

II) Live-Vorhersage

- max. spezifischer Durchfluss


Güte der vom KNN-Modell vorhergesagten Wassertiefen: Model Testing Data Results - Histogram - Test Set 2

III) Quantifizierung der Unsicherheiten

Bestimmung der Sensitivitäten mittels Ensemble-Rechnungen auf Grundlage von verschiedenen Niederschlagsszenarien & Vorfeuchtebedingungen zur Ableitung der Unsicherheiten

	Niederschlags-Szenario									
	1	•••	9	10	•••	n				
•••	X	X	X	X	X	X				
25 %	X	X	X	X	X	X				
30 %	X	X	X	X	X	X				
35 %	X	X	X	X	X	X				
40 %	Х	X	X	X	X	X				
•••	X	X	X	X	X	X				
	25 % 30 % 35 % 40 %	X 25 % X 30 % X 35 % X 40 % X	1 25 % x 30 % x x x 40 % x x x	1 9 x x 25 % x x 30 % x x x x x 40 % x x	1 9 10 x x x 25 % x x x 30 % x x x 35 % x x x 40 % x x x	1 9 10 x x x x 25 % x x x x 30 % x x x x 35 % x x x x 40 % x x x x				

Referenzen:

Zusammenfassung

- ✓ Verwendeten neuronale Netze können virtuelle Wahrheit gut abbilden
- ✓ Sehr schnelle Vorhersage der max. Überflutungstiefen in < 1 Sekunde
- ✓ Ensemble-Rechnungen für unsichere Eingangsparameter möglich (Bodenfeuchtebedingungen, Niederschlags-Vorhersage)
- Fortschreibung der Fehler aus den hydrologischen und hydrodynamischen Modellen, zusätzliche Fehler aus dem neuronalen Netz
- Trainingsdatenbank ist für jedes Einzugsgebiet neu aufzubauen (Berechnungsdauer für Überflutungsdatenbank > 30 Tage)

universität freiburg ³Professur für Hydrologie

