

Essener Tagung, Essen

NIEDRIGWASSERRISIKOMANAGEMENT: HERAUSFORDERUNGEN UND POTENTIALE

Prof. Dr.-Ing. Daniel Bachmann, Udo Satzinger M.Eng.

Veranlassung

Domfelsen Magdeburg, Elbe 2019

Jungferngrund, Rhein 2018

Quelle: BAW https://flickr.com/photos/64906758@N07/47427282351;

letzter Zugriff: 13.11.2023

1. Übersicht

Veranlassung

Zunehmende **Trockenheit** in unseren Fließgewässern (Blauwasser-Dürre) führen zu Konsequenzen

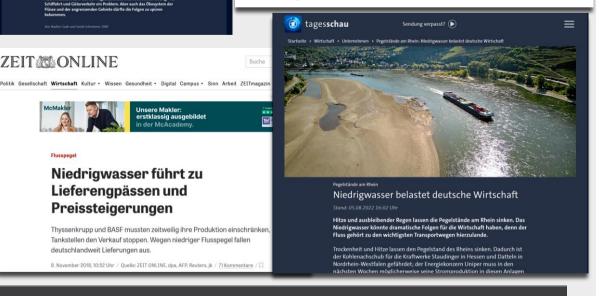
- Beispiele: Ereignisse Sommer 2018/2019/2022 führten zu
 - hydrologischen Niedrigwasserrekorden,
 - Konsequenzen für Wirtschaft und Ökologie (interdisziplinäre Aufgabe!)
- Zukünftige Verschärfung der Situation aufgrund klimatischer Veränderungen

Niedrigwasser führt zu

Lieferengpässen und

Preissteigerungen

deutschlandweit Lieferungen aus.


ZEIT ONLINE

FRRE IM ELUSSRETT

Kein Wasser im Flussbett der Selke in Hedersleben: Angler wollen Gewässer abfischen und Fische retten

Wedderstedt - Zum ersten Mal können die Mitglieder eines Angelvereins im leeren Bett des Flusses spazieren gehen. Wie der Landkreis auf den fatalen Zustand reagiert.

Von Benjamin Richter 16.08.2019, 05:56

1. Übersicht

Hochso Magdeburg • S

Veranlassung

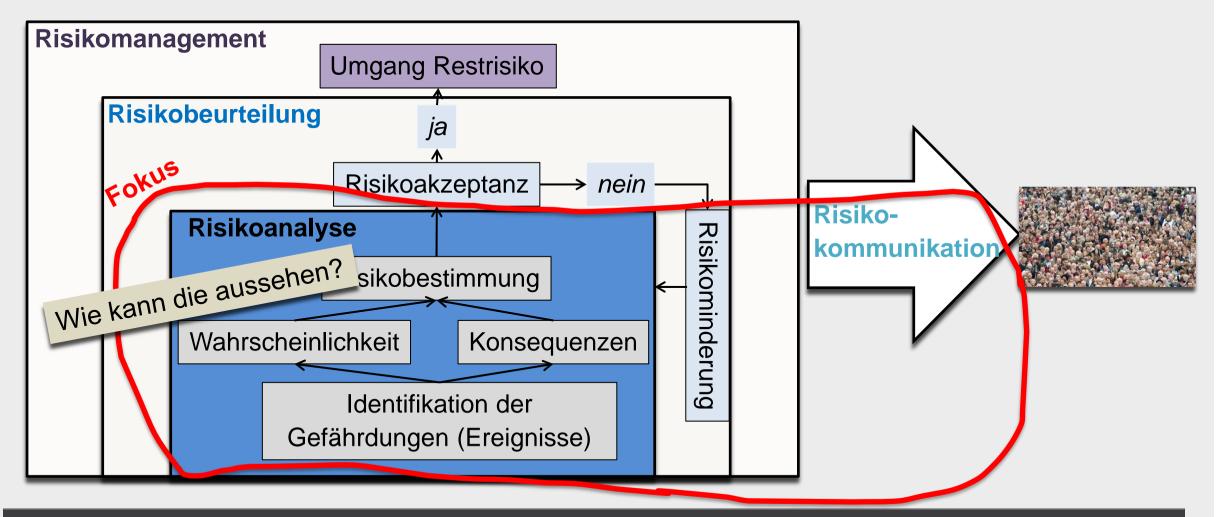
Interesse an Wasser ist groß!

 Wie sieht ein transparentes Management der Niedrigwasserproblematik und eine gerechte Verteilungsstrategie aus?
 (interdisziplinäre Aufgabe!)

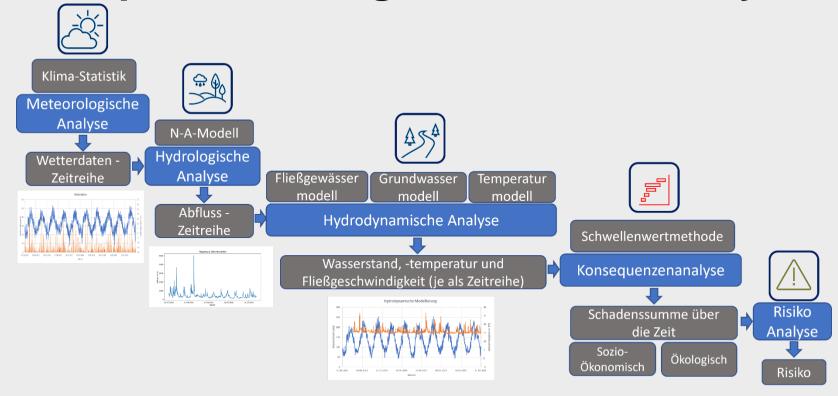
=> Lösung: Niedrigwasserrisikomanagement

(Entwicklungen im Rahmen des BMBF WaX-DRYRIVERS-

Projekt)



1. Übersicht



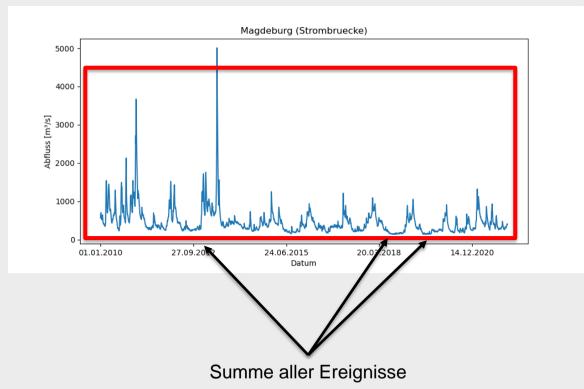
Risikoanalyse als Basis

Konzept der Niedrigwasserrisikoanalyse

Szenarien-basierter Risikoansatz vs. Kontinuierlicher Risikoansatz

Szenarien-basierter Risikoansatz

- Hochwassermodellierung häufig Szenariobasiert (z. B. HQ100)
- → Niedrigwasser: Was ist ein Szenario?


Niedrigwasser hat ein "Gedächtnis"

- Entstehung und Auftreten über Monate/Jahre
- Ereignisse "unterbrochen" durch kleinere Niederschlagsereignisse
- → langjährige Zeitreihen

Kontinuierlicher Risikoansatz:

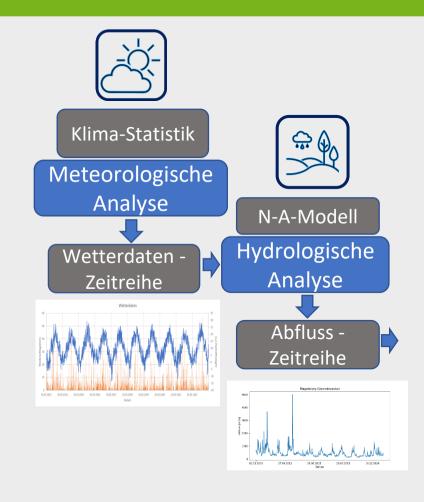
- Analyse langjähriger Zeitreihen
- Niedrigwasserrisiko [€/a] =
 (Σ_{über Jahre} Konsequenzen) / Anzahl Jahre

=> "Man muss sich nicht um Szenarien kümmern!"

Übersicht der Module: umfassende Modellierung

- Meteorologische Analyse
- Hydrologische Analyse
- Hydrodynamische Analyse
- Konsequenzenanalyse

- Risikoanalyse
- => Generation und Analyse auf langjährige Zeitreihen!

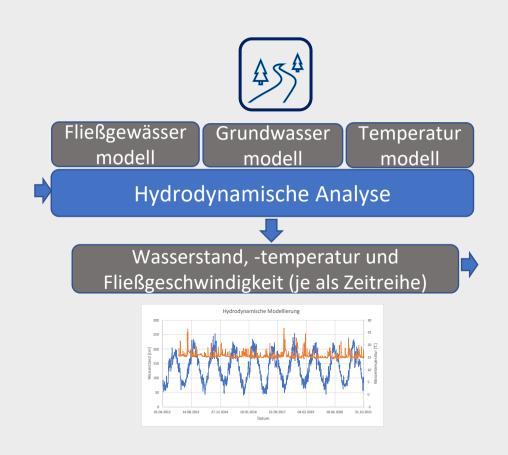


Meteorologische Analyse:

- Basiert auf der statistischen Beschreibung des aktuellen Klimas
- Erzeugt synthetische langjährige Wetter-Zeitreihen

Hydrologische Analyse:

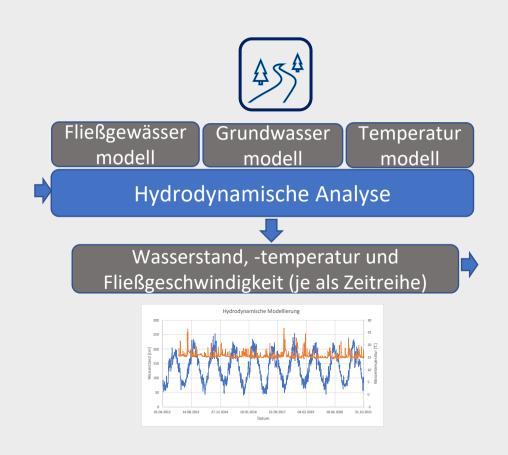
- Transformiert Wetterzeitreihen in Abflusszeitreihen
- NA-Modellierung (z.B. HBV)



Hydrodynamische Analyse

1D-Fließgewässermodell:

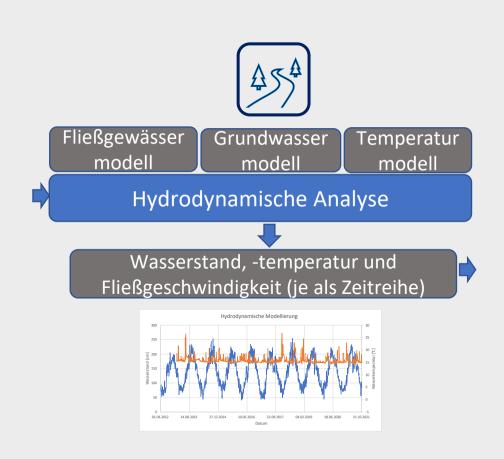
- Transformiert Abflusszeitreihen in Zeitreihen für Wasserstände und Fließgeschwindigkeiten im Fließgewässer
- Hydro-numerische Modellierung
- Basiert auf vereinfachte SAINT-VENANT-Flachwassergleichungen



Hydrodynamische Analyse

Grundwassermodell:

- Oberflächennahes Grundwasser in Gewässernähe
- Berechnet Ex-/Infiltration zwischen Grundwasser und Fließgewässer
- bidirektionale Kopplung an das 1D-Fließgewässermodell



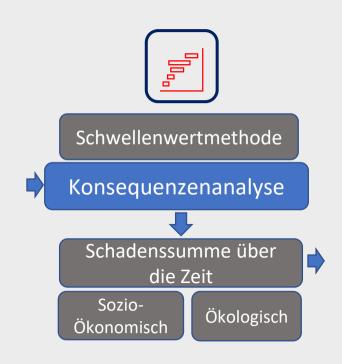
Hochschule Magdeburg • Stendal

Hydrodynamische Analyse

Temperaturmodell:

- Berechnet Zeitreihen für Wassertemperatur im Fließgewässer
- Unidirektionale Kopplung an das 1D-Fließgewässermodell

Konsequenzenanalyse


Sozio-ökonomische Konsequenzen:

- Unterschiedliche Konsequenzenkategorien:
 Schifffahrt, Wasserkraft, Freizeit, Energie,
 Brauchwasser Industrie und Landwirtschaft etc.
- Schwellenwertansätze

Ökologische Konsequenzen:

- Fische
- Makrozoobenthos
- Schwellenwertansätze (empirisch)

=> **Zeitreihen** der Konsequenzen pro Kategorie

Risiko Analyse

Risiko Analyse über die Zeitreihen der Konsequenzenkategorien:

Niedrigwasserrisiko [€/a] = (Σ_{über Jahre} Konsequenzen) / Anzahl Jahre

$$\to R_i = \frac{\sum_{j=0}^n K_{i,j}}{n}$$

Untersuchungsgebiet

Selke- Einzugsgebiet

- Süd-östlicher Harz
- 64 km lang
- 500 km² Fläche

 Durchschnittlicher Niederschlag 660 mm/a

Mittlere Abfluss an der Mündung

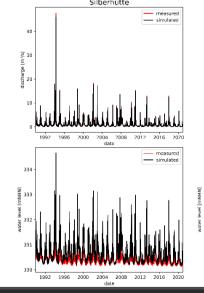
 $1,7 \text{ m}^3/\text{s}$

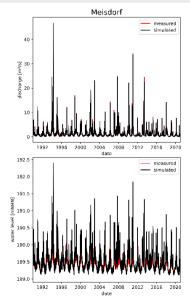
Ländlich geprägt

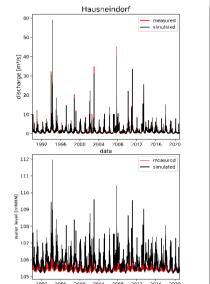
Hydrodynamik

Randbedingungen


- Historische Abflussdaten 1990 bis 2020 (30 Jahre)
- · Wettergenerator und Hydrologie hier noch nicht angewendet


Modellierung


 1d-hydrodynamisches Modell der Selke (1250 Profile) im Werkzeug LoFLoDes

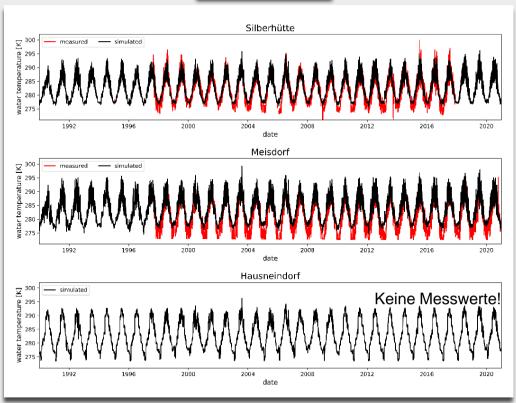

Ergebnisse: 30 Jahre Zeitreihe Abfluss und Wasserstand u.a. an 3 Pegel

- sehr gute Übereinstimmung des Abflusses
- gute Übereinstimmung mit gemessenen Wasserständen (0,06 bis 0,12 m bei NW)

Hydrodynamik-Temperatur

Randbedingungen

 Historische Wetterdaten des DWD 1990 bis 2020 (30 Jahre) für Stationen Harzgerode, Aschersleben-Mehringen


Modellierung

 1d-Temperatur Modell der Selke im Werkzeug LoFLoDes mit uni-direktionaler Kopplung zur Hydrodynamik

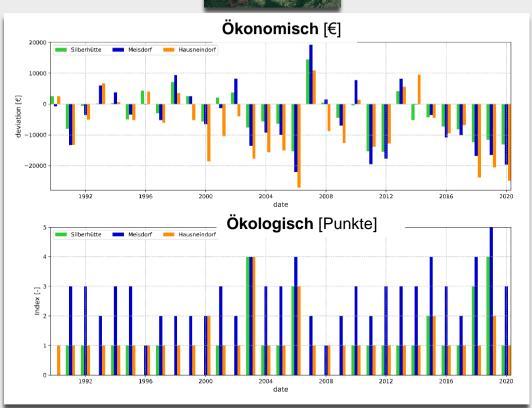
Ergebnisse: 30 Jahre Zeitreihe Wassertemperatur u.a. an 3 Pegel

- Abweichung der Wassertemperatur ca. 2 bis 3 K
- Einfluss der Temperatur der Nebenflüsse wichtig, oft unbekannt

Analyse der Konsequenzen

Randbedingungen

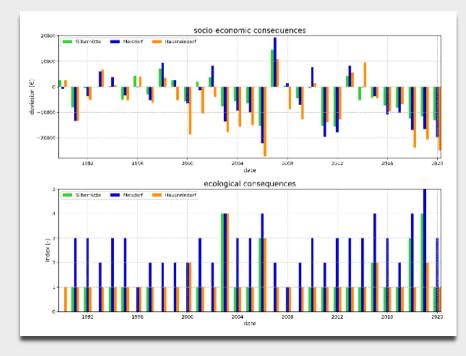
 Fiktive Konsequenzen für Wasserkraft (ökonomisch) und Ökologie für drei Abschnitte (in diesem Fall gewählt drei Pegelabschnitte)


Modellierung (hier sehr einfache Ansätze!)

- Ansatz Wasserkraft. Dimensionierung auf Basis historischer Daten, Berechnung des reellen Ertrags
- Punktesystem Ökologie: 0 (kein Schaden) bis 5 (Totalausfall) abhängig von Abfluss, Fließgeschwindigkeit, Wassertemperatur

Ergebnisse: 30 Jahre Zeitreihe Konsequenzen u.a. an 3 Pegel

 gute Übereinstimmung mit bekannten NW-Ereignissen an der Selke



Hochschule Magdeburg • Stendal

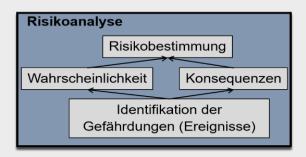
Risikoanalyse

Niedrigwasserrisiko für die Selke beträgt ca.

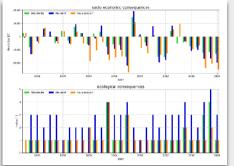
- -15.968 €/a Risiko für die Wasserkraft an der Selke (ökonomisch)
- und 1,65 Bewertungspunkte/a (ökologisch) [leichte Beeinträchtigung]

$$\rightarrow R_i = \frac{\sum_{j=0}^n K_{i,j}}{n}$$

Werkzeug


- Grundlage ist das Werkzeug PROMAIDES (zur Hochwasserrisikoanalyse https://promaides.h2.de)
- Programmstrukturen sind vorhanden: GUI, QGIS-Anbindung, PostgreSQL als Datenmanagementsystem
- Erweiterung/Anpassung zu einem
 Werkzeug für die
 Niedrigwasserrisikoanalyse LoFLoDEs
 (https://promaides.myjetbrains.com/youtrack/articles/LFD)
- QGIS-plugins zur Unterstützung Modellaufbau und Visualisierung
- Dokumentation

4. Zusammenfassung



- Niedrigwasserrisikoanalyse für ein Niedrigwasserrisikomanagement für Fließgewässer unter Berücksichtigung unterschiedliche Kategorien von Konsequenzen (sozioökonomisch / ökologisch)
- Kontinuierlicher Ansatz basierend auf langjährige Zeitreihen
- Umfassender Ansatz: vom Wetter bis zu den Konsequenzen
- Erste Prototypanwendung an der Selke:
 Praxisanwendung ist möglich!

Vielen Dank für ihre Aufmerksamkeit!

Essener ?

NIEDR

HERAU

POTEN^{*}

Prof. Dr.-In

Fragen, Anmerkungen, Ideen...? Mehr Literatur und Infos zu den Arbeiten https://promaides.myjetbrains.com/youtrack/articles/LFD-A-23/Publications

Udo Satzinger M.Eng.

